An efficient high-dimensional indexing method for content-based retrieval in large image databases
نویسندگان
چکیده
High-dimensional indexing methods have been proved quite useful for response time improvement. Based on Euclidian distance, many of them have been proposed for applications where data vectors are high-dimensional. However, these methods do not generally support efficiently similarity search when dealing with heterogeneous data vectors. In this paper, we propose a high-dimensional indexing method (KRAþ-Blocks) as an extension of the region approximation approach to the kernel space. KRAþ-Blocks combines nonlinear dimensionality reduction technique (KPCA) with region approximation approach to map data vectors into a reduced feature space. The created feature space is then used, on one hand to approximate regions, and on the other hand to provide an effective kernel distances for both filtering process and similarity measurement. In this way, the proposed approach achieves high performances in response time and in precision when dealing with high-dimensional and heterogeneous vectors. & 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملیک روش مبتنی بر خوشهبندی سلسلهمراتبی تقسیمکننده جهت شاخصگذاری اطلاعات تصویری
It is conventional to use multi-dimensional indexing structures to accelerate search operations in content-based image retrieval systems. Many efforts have been done in order to develop multi-dimensional indexing structures so far. In most practical applications of image retrieval, high-dimensional feature vectors are required, but current multi-dimensional indexing structures lose their effici...
متن کاملGrouping and Indexing Color Features for Efficient Image Retrieval
Content-based image retrieval (CBIR) aims at searching image databases for specific images that are similar to a given query image based on matching of features derived from the image content. This paper focuses on a low-dimensional color based indexing technique for achieving efficient and effective retrieval performance. In our approach, the color features are extracted using the mean shift a...
متن کاملFeature-Based Adaptive Tolerance Tree (FATT): An Efficient Indexing Technique for Content-Based Image Retrieval Using Wavelet Transform
This paper introduces a novel indexing and access method, called FeatureBased Adaptive Tolerance Tree (FATT), using wavelet transform is proposed to organize large image data sets efficiently and to support popular image access mechanisms like Content Based Image Retrieval (CBIR).Conventional database systems are designed for managing textual and numerical data and retrieving such data is often...
متن کاملEfficient Matching and Indexing of Graph Models in Content-Based Retrieval
ÐIn retrieval from image databases, evaluation of similarity, based both on the appearance of spatial entities and on their mutual relationships, depends on content representation based on Attributed Relational Graphs. This kind of modeling entails complex matching and indexing, which presently prevents its usage within comprehensive applications. In this paper, we provide a graphtheoretical fo...
متن کاملNOHIS-Tree: High-Dimensional Index Structure for Similarity Search
In Content-Based Image Retrieval systems it is important to use an efficient indexing technique in order to perform and accelerate the search in huge databases. The used indexing technique should also support the high dimensions of image features. In this paper we present the hierarchical index NOHIS-tree (Non Overlapping Hierarchical Index Structure) when we scale up to very large databases. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Sig. Proc.: Image Comm.
دوره 24 شماره
صفحات -
تاریخ انتشار 2009